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EJ-A is a Balb-3T3 transfectant cell line that bears a small number of EJ-ras 
oncogene copies/cell, has low EJ-ras expression, and resembles the parental cell line 
in displaying a non-transformed phenotype. The glucocorticoid hormone dexametha- 
sone reversibly induces transformation traits in EJ-A cells, namely: 1) morphological 
transformation; 2) increased growth rate and saturation density; 3) reduced GI 
length; and 4) independence of the FGF requirement to initiate DNA synthesis. 
Western blot analysis revealed that dexamethasone does not increase the p2 lm 
protein intracellular level. p-IFN, added to the culture medium, does not suppress 
the dexamethasone-induced growth stimulation and morphological transformation. 
Therefore, glucocorticoid hormones can complement low EJ-ras expression to trans- 
form Balb3T3 cells, by a mechanism that is likely to be independent of ~21'"" 
increase and P-IFN decrease. 
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Reports from several laboratories described a variety of effects of glucocorticoid 
hormones upon cell-cycle regulation [l-71. More recently, it has been shown that 
glucocorticoids inhibit synthesis of peptide growth factors and interferon [8-121, hence, 
modulating cell growth and possibly expression of the transformed phenotype. 

In this paper, we report that dexamethasone reversibly complements the transform- 
ing activity of mutated human c-Ha-ras-1 oncogene (EJ form) in Balb-3T3 mouse 
embryo cells. The mechanism underlying this dexamethasone effect does not seem to 
involve increased EJ-ras expression or inhibition of endogenous 0-IFN synthesis. 

MATERIALS AND METHODS 
Cells 

The original stock of early passage Balb-3T3, clone A3 1 ,  came from Dr. Charles 
D. Stiles laboratory (Dana-Farber Cancer Institute, Boston). Cultures were maintained 
under strict regimen of cultivation: continuously growing from sparse to near confluent 
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and subcultured every 3-4 days. The age of a culture, estimated from the number of 
population doublings, was carefully registered. Cultures were grown in Dulbecco’s 
modified Eagle’s medium (DME) plus 1.2 g/1 sodium bicarbonate and 10% fetal calf 
serum (FCS). Culture flasks were flushed with 5% C02-95% air and sealed; plates 
were maintained in plastic boxes flushed with the same gas mixture. 

EJ-ras Transfectants 

A series of Balb-3T3 transfectants were previously obtained [ 131 by DNA- 
mediated transfections with the human EJ-ras plasmid pEJ6.6 from Dr. R. Weinberg’s 
laboratory, MIT [ 141. This series comprised cell clones with variable oncogene dosage 
per cell. The EJ-A transfectant clone, used in this work, carries less than five EJ-ras 
copies per cell and displays low expression of this oncogene [ 131. 

Growth Curves 

In 10% FCS-DME, 5 x lo4 cells were plated per 35 mm-diameter dish. Five to six 
hours later, dexamethasone and/or IFN were added to some dishes. Duplicate plates 
were collected daily for 7-9 days, and the cells were trypsinized, formaldehyde-fixed, and 
counted in an electronic cell counter. Culture medium was changed every other day. 
Doubling times were estimated from the slope of the best-fitted straight line to the first 
four points of the curves in semilog plots. Saturation densities were derived from plateau 
values in the curves. 

[3H]Thymidine Incorporation and Autoradiography 

In 10% FCS-DME, 5 x lo3 cells were plated per 0.9 cm2 coverslip. Forty-eight 
hours later, the medium was changed to serum-free DME for 36 h. Cells were then 
restimulated to initiate DNA synthesis by addition of serum or growth factors to the 
medium. [3H]thymidine (0.25 pCi/ml; lo-’ M) was incorporated for the indicated time 
and autoradiography performed as previously described [ 151. To estimate the lag before 
the onset of DNA synthesis (G, phase length), FCS, dexamethasone, and [3H] thymidine 
were added at zero time and two coverslips were collected per point every other hour for 
26-30 h. The lag was estimated from graphs of nuclear labeling index versus time in 
hours. 

Western Blotting [ 161 

Cells were lysed in 1% Triton X-100 and 2% @-mercaptoethanol in PBS. Two 
hundred micrograms total cellular protein per lane were fractionated in 12% polyacryla- 
mide-SDS slab gels and electrotransferred (200 V for 15 h) to 0.2 pm nitrocellulose 
membranes ( S  & S BA 83). Following transfer, the membranes were stained with 0.1% 
Ponceau, photographed to monitor the amount of protein actually transferred, and, to 
estimate migration of molecular weight standards, incubated in blocking solution (5% 
non-fat milk in PBS) before antibody reaction. Monoclonal antibody against a Harvey 
v-ras synthetic peptide (Hibridioma no. 142-24ES from Microbiological Associates) was 
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Tumorigenicity Assay 
After trypsinization, lo6 cells were suspended in 0.1 ml 2% FCS-DME and 

injected subcutaneously into the scapular region of 6 week old immunocompetent 
syngeneic Balb-c mice. The animals were examined daily for palpable nodules to 
determine the latent time before tumor onset; animals were only scored as positive when 
the initial palpable nodule developed into a large tumor. Animals without tumors were 
kept for 2.5 months before being sacrificed. 

RESULTS AND DISCUSSION 

EJ-A cells [ 131 are low-expression transfectants of the EJ-ras oncogene (less than 
five copies/cell) that resemble the parental Balb-3T3 cell line in displaying a non- 
transformed phenotype (stage I cells), Upon serial cultivation, stage I EJ-A transfectant 
cells spontaneously undergo progressive transformation (without EJ-ras oncogene ampli- 
fication and/or overexpression), reaching a fully transformed state (stage I11 cells) [ 131. 

Dexamethasone treatment leads to the appearance of several transformation traits 
in stage I EJ-A cells, namely: 1) increased growth rate and saturation density (Table I); 
2) piling-up with abundant criss-crossing in confluent cultures (Fig. lA,B); and 3) 
reduction in the lag before DNA synthesis initiation (G, phase) in Go-arrested stage I 
EJ-A cells, growth restimulated by serum refeeding (Table I). None of these dexametha- 
sone effects was observed with the parental Balb-3T3 cells (Table I; Fig. 1). Stage I11 
EJ-A cells, which already display a transformed phenotype [13], were not affected by 
the glucocorticoid hormone (Table I; Fig. 1). 

Dexamethasone overides the requirement for competence growth factors to initiate 
DNA synthesis in serum-free medium displayed by stage I EJ-A cells (Fig. 2). The same 
growth factors are required by stage I EJ-A and parental Balb-3T3 cells, namely, a 
combination of FGF, EGF, and insulin (Fig. 2A,B). Dexamethasone alone did not 

TABLE I. Effects of Dexamethasone on Growth of Parental Balb3T3 Cells and Stages I and III EJ-A 
Tramfectmts 

Control Dexamethasone 
Growth parameter Cell line (untreated) treated 

Doubling time (h) Parental 
Balb-3T3 19.5(1) 19.5(1) 

EJ-A-I 21.9 * 0.8(3) 16.9 f 1.0(3) 
EJ-A-I11 13.5(1) 1 3 3  1) 

Saturation Parental 
density Balb-3T3 0.65( 1) 0.65( 1 )  

(ceIk./cm2 x lo5 ) EJ-A-I 1.7 f 0.8(3) 3.2 * 0.6(3) 
EJ-A-I11 4.0( 1 )  a 

G, length (h) Parental 
Balb-3T3 W 3 )  12(1) 

EJ-A-I W3)  10(1) 
EJ-A-111 6(3) N D  

ND: Not done. Nos. in parenthesis indicate the number of independent experiments. Figures are averages * 
s.e.m. 
"Determination imprecise because of cell detachment upon confluency caused by the hormone treatment. 
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Fig. 1. Dexamethasone effects on morphology of stages I and I11 EJ-A transfectants and parental Balb-3T3 
confluent cultures. A,B Stage I EJ-A cells untreated and treated with dexamethasone; C,D. stage I11 
untreated and treated; E,F parental B a b 3 T 3  untreated and treated, respectively. Cells were plated at  low 
density in 10% FCS-DME with and without dexamethasone (lo-’ M) and grown to confluency. Photomicro- 
graphs were taken under a phase contrast microscope (lOOx magnification) at  day 7. 

stimulate DNA synthesis (Fig. 2A,B). As expected, the hormone caused an enhance- 
ment effect on DNA synthesis stimulation by FGF plus insulin for both cell lines (Fig. 
2A,B). However, dexamethasone combined with insulin, had a large synergistic effect on 
DNA synthesis stimulation of EJ-A transfectants (Fig. 2B) but not of parental cells 
(Fig. 2A). Therefore, dexamethasone mimics a competence growth factor for stage I 
EJ-A cells. These observations are particularly important, because when EJ-A transfec- 
tants change from stages I to 111, the cells lose their requirement for FGF and PDGF 
[ 131. Moreover, this change correlates with acquisition of maximum tumorigenic 
potential in immunocompetent syngeneic mice [ 131. 

Maximal dexamethasone effect was obtained at  lop7 M whereas 1 Ops  and 1 0-9 M 
were, respectively, suboptimal and uneffective. The effect is completely reversible: Stage 
I EJ-A cells treated with dexamethasone ( lop7  M) for 7 days and then replated in 
dexamethasone-free medium displayed the same growth rate, saturation density, and 
morphology of untreated control cultures (not shown). Furthermore, dexamethasone 
pre-treatment of stage I EJ-A cells did not significantly increase its tumorigenic potential 
in immunocompetent syngeneic mice (Table 11). Table I1 also shows that stage I11 EJ-A 
cells, obtained from stage I cells by serial cultivation (see [ 13]), are highly tumorigenic. 
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Fig. 2. Restimulation of DNA synthesis initiation in cell cycle arrested (stage I) EJ-A transfectant and 
Balb3T3 parental cells: Effect of dexamethasone on growth factors' activity assayed by autoradiography. A 
Balb3T3 parental cells; B stage I EJ-A transfectants. NA: control, no addition. FGF (1 ng/ml): pure bovine 
pituitary basic fibroblast growth factor, prepared by Dr. A.G. Gambarini and P.L. Ho in this laboratory; EGF 
(10 ng/ml): pure epidermal growth factor from Collaborative Research, Boston, MA, USA: I (1 pg/ml), 
pure insulin from Sigma, St. Louis, MO. 

TABLE 11. Tumorigemc Potential of EJ-A Transfectanls Upon Dexamethasone Pretreatment 

Latent 
Dexamethasone Animals with tumor/ period 

Cell line pre-treatment injected animals (days) 
- 
30 

015 
+ 115 

EJ-A-I" - 

EJ-A-I11 - 414 14-23 

Early passage 
parental Balb3T3 - 

Late passage 
parental Balb-3T3b 

"Cells grown to confluency in medium containing lo-' M dexamethasone for 7 days and kept in dexametha- 
sone-free medium for 3 days before injections; untreated controls were parallel cultures maintained under the 
same regimen but in the absence of dexamethasone. 
bEarly passage are morphologically normal cells of low saturation density (0.5-0.6 x 10' cells/cm2) and late 
passage (more than 6 months continuous cultivation) are morphologically transformed-like cells of high 
saturationdensity (>4 x 10' ceIls/ctn*). 

However, long cultivation periods are not sufficient to render the parental Balb-3T3 cells 
tumorigenic (Table 11). 

We described elsewhere [ 131 that EJ-A cells (stages 1-111) are low-expressing 
transfectants of the EJ-ras oncogene. Here we show, by Western blot analysis, that 
dexamethasone does not alter EJ-ras expression in either stage I or I11 cells (Fig. 3). 
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TABLE III. Effects of P-IFN and Dexamethasone on Growth of Stage I EJ-A Cells 

Additions to Doubling time Saturation density 
medium (h) (ceIIs/cm2 x lo5) 

Control (no additions) 24.0 1.2 
@ - I F "  (50 U/ml) 32.2 1.3 
Dexamethasone (lo-' M) 19.4 2.4 

P-IFN plus dexamethasone 24.0 2.5 

B 1 2 3 4 5 6  

Fig. 3. Intracellular levels of p2lraS protein in cells untreated and treated with dexamethasone, assessed by 
Western blotting with a monoclonal antibody against a Harvey v-ras synthetic peptide. A: Nitrocellulose 
membrane stained with Ponceau. B Autoradiogram after '251-protein A reaction. 1,2: Parental Balb 3T3 cells 
untreated and treated with dexamethasone; 3,4: stage I EJ-A cells untreated and treated; 5,6: stage I l l  EJ-A 
cells untreated and treated, respectively. Exponentially growing cells were treated with dexamethasone (10 ' 
M) for 48 h before lysis; for other details see Materials and Methods. 

Therefore, the transforming effect of dexamethasone on stage I cells is not due to an 
increase in ~ 2 1 ' " ~  intracellular level. 

It has been reported that P-IFN blocks PDGF stimulation of Balb-3T3 cell growth 
[ 171. Also, it has been proposed [ 1 11 that dexamethasone enhances growth-factor 
activity on human diploid fibroblasts by suppressing the growth-factor-induced P-IFN 
production. 

In fact, murine P-IFN, in the range of 5&150 U/ml, inhibited growth of both 
parental Balb-3T3 and EJ-A transfectant cells (stages 1-111). The doubling time was 
increased by 3WO%, but no difference in saturation densities was detected for long- 
term cultures (8-9 days). In spite of its growth inhibitory effect, 0-IFN did not suppress 
the dexamethasone-induced growth stimulation (Table 111) and morphological transfor- 
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mation (Fig. 1) of stage I cells. Table I11 shows that @-IF" caused an increase in stage I 
EJ-A cells' doubling time from 24 to 32.2 h; addition of dexamethasone to cultures 
stimulated growth, reducing the doubling time to 19.4 h, whereas combination of @-IFN 
and dexamethasone led to a doubling time of 24 h. @-IFN caused no change in saturation 
density; dexamethasone, on the other hand, led to a twofold increase, irrespective of 
@-IFN presence. These results suggest that the mechanism by which dexamethasone 
induces transformation-like changes in stage I EJ-A cells is not via inhibition of IFN 
endogenous synthesis. 

Neoplastic transformation of primary rat embryo cells by EJ-ras oncogene re- 
quires co-transfection of multiple oncogenes [ 18-21]. This paper shows that the pheno- 
type of Balb-3T3 EJ-ras transfectants can be modulated by a hormone. These two 
approaches [i.e., 1) definition, by DNA-mediated transfection, of complementing onco- 
genes and 2) identification of hormones that modulate the transformed phenotype of 
oncogene transfectants] concur to elucidate the regulatory circuitries that control cell 
growth. 
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